How do we find music?

- **Query-by-Metadata - artist, song, album, year**
 - We must know what we want

- **Query-by-(Humming, Tapping, Beatboxing)**
 - Requires talent

- **Query-by-Song-Similarity**
 - We must possess ‘acoustically’ similar songs

- **Query-by-Semantic-Description**
 - Google seems to work pretty well for text
 - Semantic Image Labeling is a hot topic in Computer Vision
 - Can it work for music?
Semantic Music Annotation and Retrieval

Our goal is build a system that can

1. **Annotate** a song with meaningful words
2. **Retrieve** songs given a text-based query

Plan: Learn a probabilistic model that captures a relationship between audio content and words.

System Overview

Data	Representation	Modeling	Evaluation
Training Data | Annotation Vectors | Parametric Model | (annotation) Inference
Audio Feature Extraction | Parameter Estimation | (retrieval) | Evaluation
Novel Song | Text Query | Music Review

Frank Sinatra ‘Fly Me to the Moon’

‘Jazz’
‘Male Vocals’
‘Sad’
‘Mellow’
‘Slow Tempo’
Collecting an Annotated Music Corpus

We have explored three techniques

1. **Text-mining web documents**
 - 2,100 song reviews from AMG All Music
 - Extracted a vocab of 317 words

2. **Conducting a survey**
 - 174-word hierarchical vocab - genre, emotion, usage, …
 - Paid 55 undergrads to annotate music for 120 hours
 - **CAL500**: 500 songs annotated by a minimum of 3 people

3. **Deploying a ‘Human-Computation’ game**
 - Web-based, multi-player game with real-time interaction
 - ESPGame by Luis Von Ahn
 - **Listen Game**
Listen Game Demo

System Overview

Data

Features

Training Data

Annotation

Vocabulary

Annotation Vectors

Audio-Feature Extraction
Semantic Representation: y

Choose vocabulary of ‘musically relevant’ words
- Instruments, Genre, Emotion, Rhythm, Energy, Vocal, Usages

Each annotation is converted to a real-valued vector
- ‘Semantic association’ between a word and the song.

Example: Frank Sinatra’s “Fly Me to the Moon”
Vocab = {funk, jazz, guitar, female vocals, sad, passionate}
$y = [0/4, 3/4, 4/4, 0/4, 2/4, 1/4]$

Acoustic Representation: X

Each song is represented as a bag-of-feature-vectors
- Pass a short time window over the audio signal
- Extract a feature vector for each short-time audio segment
- Ignore temporal relationships of time series

$X = \left\{ x_1, x_2, x_3, \ldots, x_t \right\}$
Audio Features

We calculate **MFCC+Deltas** feature vectors

- Mel-frequency Cepstral Coefficients (MFCC)
 - Low dimensional representation short-term spectrum
 - Popular for both representing speech, music, and sound effects
- Instantaneous derivatives (deltas) encode short-time temporal info
- 5,200 39-dimensional vectors per minute

Numerous other audio representations

- Spectral features, modulation spectra, chromagrams, ...

System Overview

Data

- Training Data
- Annotation

Representation

- Audio-Feature Extraction: X
- Annotation Vectors: y
- Vocabulary

Modeling

- Parametric Model
- Parameter Estimation
Statistical Model

Supervised Multi-class Labeling model
- Set of probability distributions over the audio feature space
- One Gaussian Mixture Model (GMM) per word - \(p(x|w) \)
- **Key Idea**: Estimate parameters for GMM using the set of training songs that are positively associated with the word

Notes:
- Developed for image annotation by Carneiro and Vasconcelos
- Scalable and Parallelizable
- Modified for real-value semantic weights rather than binary class labels
- Extended formulation to handle multi-word queries

Gaussian Mixture Model (GMM)

A GMM is used to model probability distributions over high dimensional spaces:

\[
P(x|w) = \sum_{r=1}^{R} \pi_r N(x|\mu_r, \Sigma_r)
\]

A GMM is a weighted combo of \(R \) Gaussian distributions
- \(\pi_r \) is the \(r \)-th mixing weight
- \(\mu_r \) is the \(r \)-th mean
- \(\Sigma_r \) is the \(r \)-th covariance matrix

These parameters are usually estimated using a ‘standard’ **Expectation Maximization** (EM) algorithm.
Modeling Audio Content

Algorithm
1. Segment audio signals
2. Extract short-time feature vectors
3. Estimate GMM using ‘standard’ EM

Three approaches for estimating $p(x|w)$

1. Direct Estimation
 1. Identify songs associated with w
 2. Union of feature vectors for these songs
 3. Estimate GMM using ‘standard’ EM

Problem: Direct Estimation is computationally difficult and empirically converges to poor local optima.
Three approaches for estimating $p(x|w)$

2. Model Averaging Estimation
 1. Identify songs associated with w
 2. Estimate a ‘song GMM’ for each song - $p(x|s)$
 3. Use all mixture components from ‘song GMMs’

Problem: As the training set size grows, evaluating this distribution becomes prohibitively expensive.

Three approaches for estimating $p(x|w)$

3. Mixture Hierarchies
 1. Identify songs associated with w
 2. Estimate a ‘song GMM’ for each song - $p(x|s)$
 3. Use the Mixture Hierarchies EM algorithm [Vasconcelos01]
 • Learn a ‘mixture of mixture components’

Benefits
+ Computationally efficient for parameter estimation and inference
+ ‘Smoothed’ song representation \rightarrow better density estimate
Annotation

Given a novel song \(X = \{x_1, \ldots, x_T\} \), calculate the probability of each word given the song:

\[
P(w|X) = \frac{P(X|w)P(w)}{P(X)}
\]

Assuming

1. Uniform word prior \(P(w) \)
2. Vectors are conditionally independent given a word

\[
P(w|X) = \frac{\prod_{t=1}^{T} P(x_t|w)}{\sum_{v \in V} \prod_{t=1}^{T} P(x_t|v)}
\]

Semantic Multinomial:

- Conditional probabilities, \(P(w|X) \), defines multinomial over the vocabulary

Annotation: pick peaks of the semantic multinomial
Annotation: Automatic Music Reviews

Dr. Dre (feat. Snoop Dogg) - Nuthin' but a 'G' thang

This is a dance poppy, hip-hop song that is arousing and exciting. It features drum machine, backing vocals, male vocal, a nice acoustic guitar solo, and rapping, strong vocals. It is a song that is very danceable and with a heavy beat that you might like listen to while at a party.

Frank Sinatra - Fly me to the moon

This is a jazzy, singer / songwriter song that is calming and sad. It features acoustic guitar, piano, saxophone, a nice male vocal solo, and emotional, high-pitched vocals. It is a song with a light beat and a slow tempo that you might like listen to while hanging with friends.
System Overview

Data
- Training Data
- Annotation
- Annotation Vectors (y)
- Novel Song

Features
- Audio-Feature Extraction (X)
- Vocabulary

Modeling
- Parametric Model: One GMM per word
- Parameter Estimation: EM Algorithm

Inference
- (annotation)
- (retrieval)

Retrieval
1. Annotate each song in corpus with a semantic multinomial \(p \)
 - \(p = \{P(w_1|X), ..., P(w_{|V|}|X)\} \)
2. Given a text-based query, construct a query multinomial \(q \)
 - \(q_w = 1/|w| \), if word \(w \) appears in the query string
 - \(q_w = 0 \), otherwise
3. Rank all songs by the Kullback-Leibler (KL) divergence

\[
KL(q||p) = \sum_{w \in V} q_w \log \frac{q_w}{p_w}
\]
Retrieval

The top 3 semantic multinomials for the query “‘pop’, ‘female lead vocals’, ‘tender’”

<table>
<thead>
<tr>
<th>Query</th>
<th>Retrieved Songs</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Tender’</td>
<td>Crosby, Stills and Nash - Guinevere</td>
</tr>
<tr>
<td></td>
<td>Jewel - Enter from the East</td>
</tr>
<tr>
<td></td>
<td>Art Tatum - Willow Weep for Me</td>
</tr>
<tr>
<td></td>
<td>John Lennon - Imagine</td>
</tr>
<tr>
<td></td>
<td>Tom Waits - Time</td>
</tr>
<tr>
<td>‘Female Vocals’</td>
<td>Alicia Keys - Fallin’</td>
</tr>
<tr>
<td></td>
<td>Shakira - The One</td>
</tr>
<tr>
<td></td>
<td>Christina Aguilera - Genie in a Bottle</td>
</tr>
<tr>
<td></td>
<td>Junior Murvin - Police and Thieves</td>
</tr>
<tr>
<td></td>
<td>Britney Spears - I'm a Slave 4 U</td>
</tr>
<tr>
<td>‘Tender’ AND</td>
<td>Jewel - Enter from the East</td>
</tr>
<tr>
<td>‘Female Vocals’</td>
<td>Evanescence - My Immortal</td>
</tr>
<tr>
<td></td>
<td>Cowboy Junkies - Postcard Blues</td>
</tr>
<tr>
<td></td>
<td>Everly Brothers - Take a Message to Mary</td>
</tr>
<tr>
<td></td>
<td>Sheryl Crow - I Shall Believe</td>
</tr>
</tbody>
</table>
Quantifying Annotation

Our system annotates the Cal-500 songs with 10 words from our vocabulary of 174 words.
- ‘Consensus Annotation’ Ground Truth

Metric: ‘Word’ Precision & Recall

```
Precision = \frac{\# \text{ songs correctly annotated with } w}{\# \text{ songs annotated with } w}
```

```
Recall = \frac{\# \text{ songs correctly annotated with } w}{\# \text{ songs that should have been annotated } w}
```

Mean Word Recall and Word Precision are the averages over all words in our vocabulary.
Quantifying Annotation

Our system annotates the Cal-500 songs with 10 words from our vocabulary of 174 words.

<table>
<thead>
<tr>
<th>Method</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>0.14</td>
<td>0.06</td>
</tr>
<tr>
<td>Upper Bound</td>
<td>0.71</td>
<td>0.38</td>
</tr>
<tr>
<td>Our System</td>
<td>0.27</td>
<td>0.16</td>
</tr>
<tr>
<td>Human</td>
<td>0.30</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Compared with a human, our model is
- worse on objective categories - instrumentation, genre
- about the same on subjective categories - emotion, usage

Quantifying Retrieval

Rank order test set songs
- KL between a query multinomial and semantic multinomials
- 1-, 2-, 3-word queries with 5 or more examples

Metric: Area under the ROC Curve (AROC)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Label</th>
<th>TP</th>
<th>FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>1/2</td>
<td>1/3</td>
</tr>
<tr>
<td>3</td>
<td>R</td>
<td>1</td>
<td>1/3</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>1</td>
<td>2/3</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Mean AROC is the average AROC over a large number of queries.
Quantifying Retrieval

We rank order songs according to KL once for each query.

<table>
<thead>
<tr>
<th>Model</th>
<th>AROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>0.50</td>
</tr>
<tr>
<td>Upper Bound</td>
<td>1.00</td>
</tr>
<tr>
<td>Our System - 1 Word</td>
<td>0.71</td>
</tr>
<tr>
<td>Our System - 2 Words</td>
<td>0.72</td>
</tr>
<tr>
<td>Our System - 3 Words</td>
<td>0.73</td>
</tr>
</tbody>
</table>

System Overview

Data

- Training Data
 - Annotation
- Novel Song

Features

- Audio-Feature Extraction (X)
- Annotation Vectors (y)

Modeling

- Parametric Model: Set of GMMs
 - EM Algorithm

Inference

- (annotation)
- (retrieval)

Evaluation

- Music Review
- Evaluation
CAL Music Search Engine

What’s on tap…

Building ‘Commercial Grade’ system

1. Collecting data
 - ‘Legally’ collecting music
 - Listen Game -> Herd It Game

2. Vocabulary expansion
 - LastFM - 25,000 tags
 - Vocab selection using Sparse CCA - ISMIR 07
 - Web Documents - All words

3. User interface design
 - Natural language music search engine
 - Customizable radio player

4. Automated ‘Large Scale’ System
What’s on tap…

Machine Learning Challenges

1. Derive song similarity
 • Query-by-semantic-example - ICASSP 07, MIREX 07
2. Model correlation between labels
3. Explore discriminative approaches
4. Combine heterogeneous data sources
 • Game Data, Semantic Tags, Web Documents, Popularity Info
5. Focus on individuals / groups rather than population
 • Emotional state of listener

“Talking about music is like dancing about architecture”
- origins unknown

Gert Lanckriet
Computer Audition Lab
UC San Diego

gert@ece.ucsd.edu
cosmal.ucsd.edu/~gert