Computing frequent patterns from semi-structured data

Natalia Vanetik, Ehud Gudes and Eyal S. Shimony

Department of Computer Science,
Ben-Gurion University of the Negev

Talk outline

Part 1 Introduction
 1.1 Motivation and background
 1.2 Overview of the graph mining algorithm

Part 2 Details
 2.1 The support measure
 2.2 Combining graphs
 2.3 Details of the mining algorithm

Part 3 Experimental evaluation

Part 4 Conclusions and future work
What Graphs are good for?

- Most of existing data mining algorithms are based on transaction representation, i.e., sets of items.
- Datasets with structures, layers, hierarchy and/or geometry often do not fit well in this transaction setting. For e.g.
 - Numerical simulations
 - 3D protein structures
 - Chemical Compounds
 - Generic XML files.

Graph Based Data Mining

- Graph Mining then essentially is the problem of discovering repetitive subgraphs occurring in the input graphs.

- Motivation:
 - finding subgraphs capable of compressing the data by abstracting instances of the substructures.
 - Identifying conceptually interesting patterns
Overview

Semi-structured data is any data that can be modeled as a labeled graph. For example, XML and HTML data, user access patterns.

Frequent patterns discovered from semi-structured data are useful for:

- Improving database design (A. Deutsch, M. Fernandez, D. Suciu “Storing Semistructured Data with STORED”, SIGMOD’99)
- Efficient indexing (R. Goldman, J. Widom “DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases”, VLDB’97)
- User preference based applications
- User behavior predictions
- Database storage and archival

Rule-based patterns
Patterns of form $A_1,A_2,...,A_n \Rightarrow B$ where $A_1,...,A_n,B$ are atomic values.
Example: “diapers ⇒ beer”.

Topology-based patterns
Patterns that have structure in addition to atomic values
Example: graph patterns

\[
\begin{aligned}
\text{university} & \quad \text{staff} \\
\text{staff} & \quad \text{research} \\
\text{research} & \quad \text{publications} \quad \text{research interests}
\end{aligned}
\]
Overview

Definition Transaction database is a set of records where each record contains results of a single transaction.

Example: Supermarket database where each purchase is a transaction.

An item-set X in relational model is a set of tuples $(f_1,v_1),\ldots,(f_n,v_n)$ where f_i are the names of fields and v_i are values. n is a size of an item-set.

A transaction T supports X if the value of f_i equals v_i for any i.

Let user-defined support threshold be $s\%$. An item-set X is frequent if $s\%$ or more transactions in the database support X.

Apriori algorithm

Apriori principle: If X is a frequent item-set of size n then all items X' contained in X are frequent as well.

Apriori algorithm: each item-set X of size n is first generated from two frequent item-sets X_1 and X_2 of size $(n-1)$ and then its frequency is evaluated by a pass over the database.
Background

Existing algorithms

- Simple path patterns (Chen, Park, Yu 98)
- Generalized path patterns (Nanopoulos, Manolopoulos 01)
- Simple tree patterns (Lin, Liu, Zhang, Zhou 98)
- Tree-like patterns (Wang, Huiqing, Liu 98)
- “Naïve” graph patterns (Kuramochi, Karypis 01)

FSG Algorithm

[M. Kuramochi and G. Karypis. *Frequent subgraph discovery.*]

- Incremental and breadth-first fashion in the size of frequent subgraphs (like Apriori for frequent itemsets)
- Counting of single and double edge subgraphs
- For finding frequent subgraphs from size k ($k > 2$).
 - Candidates generation- all possible joining of two graphs from size $k-1$ which share common kernel subgraph from size $k-2$.
 - Candidate pruning- a necessary condition of candidate to be frequent is that each of its subgraphs is frequent.
 - Frequency counting - Check if a candidate subgraph appear at least minSup (minimum support) times.
 - Repeat the steps for $k=k+1$
GSpan Algorithm

[X. Yan and J. Han. GSpan: Graph-based substructure pattern mining.]

- Adopts a pattern-growth by growing patterns from a single graph directly.
- The algorithm maps each subgraph to a unique label.
- By using these labels, a Tree Search-Space (TSS) hierarchy is constructed over all possible subgraphs.
- A subgraph from size k is kept in node at depth k in TSS.
- An in-order search over the TSS lets discover all frequent subgraphs.
 - Pruning - If a node in TSS holds infrequent subgraph then its sub-tree in TSS is pruned.

Overview

Model: A semistructured database is viewed as a (labeled) graph. A pattern is any connected subgraph of a database graph.

Goal: Find all frequent connected subgraphs of a database graph.

Related problem: What if there are no transactions in the database (when it is a single graph, such as XML file, Web etc.)? How do we count pattern instances? What is support of a graph pattern?

Most existing algorithms use Transactions based databases!

We assume a single graph database!
Overview (contd.)

Most existing algorithms use Apriori-based approach.

The basic building block is either a tree (for tree mining only) or an edge.

Our approach: use edge-disjoint paths as building blocks.

Result: faster convergence of the algorithm

Path Facts

Definition Path number $p(G)$ of a graph is the minimal number of edge-disjoint paths that cover all edges in the graph. A collection of $p(G)$ paths that cover all edges is called a minimal path cover.

Graph G is **Eulerian** if it can be covered by a single cyclic path (in this case, $p(G)=1$).

For a non-Eulerian connected graph G, the following is true:

$$p(G) = \frac{1}{2} \left| \left\{ v \in V \mid d(v) \text{ is odd} \right\} \right|$$

(for an undirected graph)

$$p(G) = \frac{\sum_{v \in V} \left| d^+(v) - d^-(v) \right|}{2}$$

(for a directed graph)
Path Facts

Definition Graph $G' = G \backslash P$ where P is an edge-disjoint path denotes the graph obtained by removing from G all edges of P followed by removing of all trivial sub-graphs.

Claim 1: Let P be any path from minimal path cover of a connected graph G. Then $p(G \backslash P) = p(G) - 1$.

Claim 2: In any path cover of connected graph G there are at least two paths P_1, P_2 such that $G \backslash P_1$ and $G \backslash P_2$ are connected.

We also define an order \preceq on paths in order to represent a path decomposition of a graph in a unique way. We only store decompositions that are minimal with respect to this order (denoted by P-minimal).

Three phases of mining algorithm

- Phase #1 finds all frequent graph patterns with path number 1
- Phase #2 finds all frequent graph patterns with path number 2 by “joining” pairs of patterns found in phase #1
- Phase #3 finds all frequent graph patterns with path number $n \geq 3$ by “joining” pairs of patterns with path number $(n-1)$.
Support issue

Definition a support measure S is admissible if for any pattern P and any sub-pattern $Q \subset P$, $S(Q) \geq S(P)$.

Problem: the number of appearances of the graph pattern in the database graph is not an admissible support measure.

Graph A appears 3 times in the database graph, while graph $B \subset A$ appears only once.

Support issue

Definition An instance graph $I(P)$ of pattern P in database graph D is a graph $G = (V,E)$ where $V = \{g \subset G, g \approx P\}$ and $E = \{(g,h), g,h \in V \text{ and } E(g) \cap E(h) \neq \emptyset\}$.

Operations on instance graph:

- **clique contraction**
 replacing a clique C by a single node c such that only the nodes that were adjacent to each node of C may become adjacent to c

- **node expansion**
 replacing an existing node v by a new subgraph whose nodes may or may not be adjacent to the nodes adjacent to v

- **node addition**
 adding a new node to the graph and arbitrary edges between the new node and the old ones

- **edge removal**
Example of operations on instance graph

- clique contraction
- vertex addition
- edge removal
- vertex expansion

The main result

Theorem A support measure S is an admissible support measure if it is non-decreasing on instance graph $I(P)$ of every pattern P under clique contraction, node expansion, node addition and edge removal.

Note we proved a stronger result: support measure is admissible if and only if it is non-decreasing on $I(P)$ under these operations.
Example of support measure

Admissible support measure:

Maximum independent set size of instance graph

Number of edges in the database graph

Motivation:

We are interested in *typical* structure, i.e. structures created by many users. A single complex structure that has many references is less interesting for us.

Most common support measures are covered by this definition, including the standard one for transaction databases.

Graph composition - composition relation

Definition A *composition relation* \(C(P_1, \ldots, P_n) \) on paths \(P_1, \ldots, P_n \) of graph \(G \) is a table with nodes of \(G \) as rows and paths as columns such that \(C[i,j] \neq \bot \) iff \(i \)-th node of \(G \) is also a node of path \(P_j \).

Example: \(C(P_1, P_2, P_3) \) as a table

<table>
<thead>
<tr>
<th>Node</th>
<th>(P_1)</th>
<th>(P_2)</th>
<th>(P_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1</td>
<td>a1</td>
<td>(\bot)</td>
<td>(\bot)</td>
</tr>
<tr>
<td>v2</td>
<td>a2</td>
<td>b2</td>
<td>(\bot)</td>
</tr>
<tr>
<td>v3</td>
<td>a3</td>
<td>(\bot)</td>
<td>(\bot)</td>
</tr>
<tr>
<td>v4</td>
<td>(\bot)</td>
<td>b1</td>
<td>(\bot)</td>
</tr>
<tr>
<td>v5</td>
<td>(\bot)</td>
<td>b3</td>
<td>c3</td>
</tr>
<tr>
<td>v6</td>
<td>(\bot)</td>
<td>(\bot)</td>
<td>c1</td>
</tr>
<tr>
<td>v7</td>
<td>(\bot)</td>
<td>(\bot)</td>
<td>c2</td>
</tr>
</tbody>
</table>
Graph composition

By treating table rows as graph nodes and defining edges \((i,j)\) whenever two nodes of a path \(P_k\), appearing in rows \(i\) and \(j\), have an edge between them, we can construct a graph corresponding to composition relation \(C(P_1,\ldots,P_n)\).

Notation: graph composition (realization) \(\Omega(C)\) of \(C(P_1,\ldots,P_n)\).

Example: Graph composition \(\Omega(C(P_1,P_2,P_3))\).

Subtraction from Composition Relation

Definition Subtraction of a path \(P_i\) from composition relation consists of:

a) eliminating the \(i\)-th column from the table;
b) removal of all rows containing only null values.

Example: \(C(P_1,P_2,P_3)\) after subtraction of \(P_3\), denoted by \(C \setminus P_3\) or \(C_{\{1,2\}}\).
Bijective sum

Definition A bijective sum $BS(C_1, C_2, I_1, I_2)$ of composition relations C_1 and C_2, where I_1, I_2 are sets of indices and $C_1|_{I_1} = C_2|_{I_2}$, is a composition relation obtained by adding all columns of C_2 corresponding to paths that are not in C_1, to the table of C_1.

Example: Bijective sum of C_1 and C_2 on common paths P_1 and P_2.

<table>
<thead>
<tr>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1</td>
<td>a1</td>
<td>v1</td>
</tr>
<tr>
<td>v2</td>
<td>a2</td>
<td>v2</td>
</tr>
<tr>
<td>v3</td>
<td>a3</td>
<td>v3</td>
</tr>
<tr>
<td>v4</td>
<td>b1</td>
<td>v4</td>
</tr>
<tr>
<td>v5</td>
<td>b3</td>
<td>c3</td>
</tr>
<tr>
<td>v6</td>
<td>c1</td>
<td>v6</td>
</tr>
<tr>
<td>v7</td>
<td>c2</td>
<td>v7</td>
</tr>
<tr>
<td>v8</td>
<td>d2</td>
<td>v8</td>
</tr>
<tr>
<td>v9</td>
<td>d5</td>
<td>v9</td>
</tr>
</tbody>
</table>

Graph composition of a bijective sum

[Diagram of graph compositions]
Splice

Definition A splice \oplus_{ij} of two composition relations $C_1(P_1,\ldots,P_n)$ and $C_2(P_i,P_j)$, is a composition relation that turns every node common to P_i and P_j in C_2, into the node common to P_i and P_j in C_1 as well.

Example: $C_3 = C_1(P_1,P_2,P_3) \oplus_{2,3} C_2(P_2,P_3)$.
Phase #1 – overview

Definition: A node v in graph G is balanced if degree of v is even (for undirected graphs). A node is unbalanced if it is not balanced.

Phase #1 constructs frequent paths by adding one edge at a time.

If the path is cyclic (i.e., a (not necessarily simple) cycle), we can add edge anywhere (providing the labels match):
1. between two existing nodes,
2. between existing and new node.

If the path is not cyclic, we can add edge between pair of nodes one of which is unbalanced:
1. between two existing unbalanced nodes,
2. between existing unbalanced and existing balanced node,
3. between existing unbalanced node and a new node.

Phase #1 – Path generation

Algorithm: Phase #1

1. Find all frequent edges and add them to L_{1,1}. Set k←2.
2. Set C_{1,k}←∅, L_{1,k}←∅.
3. For every path P∈L_{1,k-1} and every edge e=(v,u)∈L_{1,1} do:
 a. Let X be all nodes of P if P is cyclic and all unbalanced nodes of P if P is non-cyclic.
 b. For every x∈X such that x≈v, add Q=(V(P)∪{u}, E(P)∪{x,u}) to C_{1,k} if p(Q)=1.
 c. For every x∈X such that x≈u, add Q=(V(P)∪{v}, E(P)∪{(v, x)}) to C_{1,k} if p(Q)=1.
 d. For every x,y∈X such that x≈v, x≈u and (x,y)∉E(P), add Q=(V(P), E(P)∪{(x, y)}) to C_{1,k} if p(Q)=1.
4. Compute frequency of all paths from C_{1,k} and add the frequent ones to L_{1,k}.
5. If L_{1,k}=∅, stop. Otherwise, set k←k+1 and go to step 2.
Phase #1 – Example

Algorithm: Phase #2

1. Let \(L_1 \) be the set of all frequent paths.
 Set \(C_2 \leftarrow \emptyset \), \(L_2 \leftarrow \emptyset \).
2. For every pair \(P_1, P_2 \in L_1 \) and every possible label-preserving composition relation \(C \) on \(P_1 \) and \(P_2 \) do:
 a. If \(p(\Omega(<P_1, P_2>, C)) = 2 \), add \(<P_1, P_2, C> \) to \(C_2 \).
3. Remove all tuples producing non P-minimal graphs from \(C_2 \).
4. For every \(t \in C_2 \) if \(\Omega(t) \) is frequent, add it to \(L_2 \).

Phase #2 – Path pairs generation
Phase #2 - Example

Join of two paths produced three graphs with path number 2

Phase #3 – overview

Phase #3:
Input = frequent graphs with path number k
Output = frequent graphs with path number $(k+1)$

The main step:
1. find a common $(k-1)$-subgraph of two k-graphs,
2. if found, join these graphs into $(k+1)$-graph using bijective sum operation,

Additional step:
3. for bijective sum G of two graphs and two paths P and Q in which these graphs differ, find all frequent combinations of P and Q in L_2, and join them with G using splice operation.
Phase #3 – Graphs with \(p(G) \geq 3 \)

Algorithm: Phase #3

1. Let \(L_2 \) be the set of all frequent path pairs. Set \(k \leftarrow 3 \).
2. Set \(C_k \leftarrow \emptyset \), \(L_k \leftarrow \emptyset \).
3. For every \(t_1, t_2 \in L_{k-1} \) such that \(t_1 = \langle P_1, \ldots, P_{i-1}, P_i, \ldots, P_j, \ldots, P_k, C_1 \rangle \) and \(t_2 = \langle P_1, \ldots, P_j, \ldots, P_{j-1}, P_{j+1}, \ldots, P_k, C_2 \rangle \) do:
 a. Let \(C = BS(C_1, C_2, (k)-i-j, (k)-i-j) \).
 b. Add \(t = \langle P_1, \ldots, P_k, C \rangle \) to \(C_k \) (if \(p(\Omega(t)) = k \)).
 c. For every \(t_3 = \langle P_i, P_j, C_3 \rangle \in L_2 \), add \(t = \langle P_1, \ldots, P_k, C \oplus_i,j C_3 \rangle \) to \(C_k \) (if \(p(\Omega(t)) = k \)).
4. Remove all non P-minimal tuples from \(C_k \).
5. Add every \(t \in C_k \), where \(\Omega(t) \) is frequent, to \(L_k \).
6. If \(L_k = \emptyset \), stop. Otherwise, set \(k \leftarrow k+1 \) and go to step 2.

Proof milestones

Theorem 1 All frequent graphs with path number 1 are produced by phase 1 of the algorithm.

Basis: For every path \(P \) and unbalanced vertex \(v \) of \(P \) there exists a vertex \(u \) such that \((u,v) \in E(P) \) and \(P \setminus (u,v) \) is a path.

Theorem 2 All frequent graphs with path number 2 are produced by phase 2 of the algorithm.

Basis: Each graph \(G \) with \(p(G) = 2 \) can be expressed as a label-preserving composition relation on two paths from its any P-minimal path decomposition.

Theorem 3 All frequent graphs with \(p(G) > 2 \) are produced by phase 3.

Main steps:
1. There exists two paths \(P, Q \) in minimal path decomposition of \(G \) such that \(G \setminus P \) and \(G \setminus Q \) are connected.
2. \(G \setminus P \) and \(G \setminus Q \) are also frequent and were found earlier.
3. If \(P \) and \(Q \) are disjoint in \(G \), then application of a bijective sum produces \(G \).
4. Otherwise, bijective sum and splice combined produce \(G \).
Complexity

Exponential – as the number of frequent patterns can be exponential on the size of the database

Difficult tasks:
1. Support computation that consists of:
 a. Finding all instances of a frequent pattern in the database.
 b. Computing MIS (maximum independent set size) of an instance graph.

Relatively easy tasks:
1. Candidate set generation:
 polynomial on the size of frequent set from previous iteration,
2. Elimination of isomorphic candidate patterns:
 graph isomorphism computation is at worst exponential on the size of a pattern, not a database.

Phase #3 – complexity

Algorithm: Phase #3

1. Let \(L_2 \) be the set of all frequent path pairs. Set \(k \leftarrow 3 \).
2. Set \(C_k \leftarrow \emptyset \), \(L_k \leftarrow \emptyset \).
3. For every \(t_1, t_2 \in L_k \) such that \(t_1 = \langle P_1, P_2, \ldots, P_i, C_1 \rangle \) and \(t_2 = \langle P_1, P_2, \ldots, P_j, C_2 \rangle \) do:
 a. Let \(C = \text{BS}(C_1, C_2, (k) - i - j, (k) - i - j) \).
 b. Add \(t = \langle P_1, \ldots, P_k, C \rangle \) to \(C_k \) (if \(p(\Omega(t)) = k \)).
 c. For every \(t_3 = \langle P_i, P_j, C_3 \rangle \in L_2 \), add \(t = \langle P_1, \ldots, P_k, C \oplus C_3 \rangle \) to \(C_k \) (if \(p(\Omega(t)) = k \)).
4. Remove all non P-minimal tuples from \(C_k \).
5. Add every \(t \in C_k \), where \(\Omega(t) \) is frequent, to \(L_k \).
6. If \(L_k = \emptyset \), stop. Otherwise, set \(k \leftarrow k + 1 \) and go to step 2.
Complexity (cont.)

Why is mining in real-life databases easier?

- real databases tend to be sparse rather than dense,
- real databases tend to have large number of different labels.

Impact on algorithm’s complexity:

- the number of database subgraphs isomorphic to a given graph pattern is not exponential,
- the size of instance graph is not exponential,
- instance graphs tend to be very sparse, which makes the task of finding MIS much easier.

Additional improvements:

- approximate techniques can be used for MIS computation as user usually does not care for the *exact* support value.

Experiment overview

Goals of our experiments are:

- To compare our algorithm with naïve algorithms:
 - **Naive1** – produce *all* graphs and compute their support (B. D. McKay *Isomorph-free exhaustive generation*, J. of Algorithms vol. 26, 1998)
 - **Naive2** – at each iteration, add edge to frequent graphs from previous iteration

- To study algorithm’s behavior on various graph topologies:
 - cliques
 - trees
 - sparse graphs vs dense graphs

- To study the effect of following parameters on the number of frequent patterns found:
 - size of the database
 - number of different labels

- Test algorithm on both synthetic and real-life databases
Experiments setting

Notation: S – support; N – nodes; L – labels; E – edges
FP – frequent patterns
C – candidate patterns; I – isomorphism checks;
SC – support calculations; ALG - algorithm in use.

Experimental results on synthetic data: trees

<table>
<thead>
<tr>
<th>#</th>
<th>N</th>
<th>L</th>
<th>S</th>
<th>FP</th>
<th>ALG</th>
<th>C</th>
<th>I</th>
<th>Sc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>4</td>
<td>7%</td>
<td>15</td>
<td>Naive2</td>
<td>100</td>
<td>24</td>
<td>92</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>4</td>
<td>7%</td>
<td>16</td>
<td>Naive2</td>
<td>110</td>
<td>43</td>
<td>102</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>6</td>
<td>3%</td>
<td>37</td>
<td>Naive2</td>
<td>470</td>
<td>82</td>
<td>458</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>8</td>
<td>3%</td>
<td>27</td>
<td>Naive2</td>
<td>202</td>
<td>229</td>
<td>205</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>4</td>
<td>8%</td>
<td>15</td>
<td>Naive2</td>
<td>108</td>
<td>24</td>
<td>95</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>6</td>
<td>8%</td>
<td>44</td>
<td>Naive2</td>
<td>728</td>
<td>203</td>
<td>716</td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>8</td>
<td>8%</td>
<td>14</td>
<td>Naive2</td>
<td>103</td>
<td>18</td>
<td>87</td>
</tr>
</tbody>
</table>
Experimental results on synthetic data: sparse graphs

<table>
<thead>
<tr>
<th>S</th>
<th>N</th>
<th>E</th>
<th>L</th>
<th>S</th>
<th>FP</th>
<th>ALG</th>
<th>C</th>
<th>I</th>
<th>SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>50</td>
<td>4</td>
<td>7%</td>
<td>14</td>
<td>Naive2</td>
<td>60</td>
<td>33</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Apriori</td>
<td>49</td>
<td>55</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>50</td>
<td>6</td>
<td>3%</td>
<td>17</td>
<td>Naive2</td>
<td>84</td>
<td>48</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Apriori</td>
<td>59</td>
<td>70</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>60</td>
<td>6</td>
<td>3%</td>
<td>28</td>
<td>Naive2</td>
<td>355</td>
<td>74</td>
<td>343</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Apriori</td>
<td>117</td>
<td>185</td>
<td>143</td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>80</td>
<td>4</td>
<td>4%</td>
<td>16</td>
<td>Naive2</td>
<td>101</td>
<td>31</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Apriori</td>
<td>56</td>
<td>58</td>
<td>56</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>80</td>
<td>6</td>
<td>3%</td>
<td>27</td>
<td>Naive2</td>
<td>265</td>
<td>86</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Apriori</td>
<td>120</td>
<td>102</td>
<td>110</td>
</tr>
<tr>
<td>6</td>
<td>70</td>
<td>90</td>
<td>8</td>
<td>3%</td>
<td>27</td>
<td>Naive2</td>
<td>252</td>
<td>77</td>
<td>236</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Apriori</td>
<td>126</td>
<td>98</td>
<td>119</td>
</tr>
<tr>
<td>7</td>
<td>80</td>
<td>100</td>
<td>8</td>
<td>3%</td>
<td>32</td>
<td>Naive2</td>
<td>460</td>
<td>74</td>
<td>387</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Apriori</td>
<td>149</td>
<td>127</td>
<td>141</td>
</tr>
</tbody>
</table>

Subsets of Movie database used in experiments

<table>
<thead>
<tr>
<th>Data set #</th>
<th>Nodes</th>
<th>Edges</th>
<th>Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12656</td>
<td>13878</td>
<td>112</td>
</tr>
<tr>
<td>2</td>
<td>8337</td>
<td>9416</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>7027</td>
<td>7851</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>4730</td>
<td>4813</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>2757</td>
<td>2794</td>
<td>76</td>
</tr>
<tr>
<td>6</td>
<td>1293</td>
<td>1292</td>
<td>91</td>
</tr>
</tbody>
</table>
Experimental results on subsets of Movie database

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of frequent patterns</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90%</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>20%</td>
</tr>
<tr>
<td>80%</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>10%</td>
</tr>
<tr>
<td>70%</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>9%</td>
</tr>
<tr>
<td>60%</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>9</td>
<td>8%</td>
</tr>
<tr>
<td>50%</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>21</td>
<td>8%</td>
</tr>
<tr>
<td>40%</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>32</td>
<td>6%</td>
</tr>
<tr>
<td>30%</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>34</td>
<td>5%</td>
</tr>
</tbody>
</table>

Comparison

Our algorithm vs naive ones
- Naive1 algorithm does not work on graphs with ≥ 10 nodes
- Our algorithm produces less candidate patterns and therefore performs less support computations than Naive2 algorithm.

Trees vs sparse graphs
- Support computation is easier for trees
- Less candidate patterns are generated for trees

Synthetic vs real-life data
- Synthetic graphs are not very regular. When increasing number of labels, the chance of finding non-trivial frequent graph patterns decreases drastically.
 Large real-life graph databases are highly regular and contain complex frequent graph patterns.
Experimental results (on synthetic data)

- Frequency of patterns vs. support
- Time vs. support

Series 1, Series 2, Series 3
Pattern examples in Movies database

G2:
- movie
 - title
 - film
 - director

G7:
- movie
 - director
 - movie

G14:
- movie
 - actor
 - movie
 - director

Conclusion

- An Apriori-like algorithm for mining graph patterns that uses edge-disjoint paths as building blocks has been constructed.
- A problem of defining support measure for semi-structured data was addressed.
- An experimental analysis of the algorithm was conducted.
Future work

- Usage of building blocks other than edge disjoint paths, such as trees.
- Using Apriori-TID technique at the advanced stages of the search.
- Treat patterns that have high degree of resemblance, such as bisimular patterns, as representatives of their equivalency classes and generate representatives of each class instead of the full search.
- Find additional examples of admissible support measures.
- Take into account topological properties of a database graph while computing support.
- Compare with GSPAN algorithm using our Support measure.